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This supplementary material contains technical details of the theoretical approach (part I) and
of the simulations (part II).

I: THEORETICAL DETAILS

Starting point of our approach are the variables of
an ergodic fluid, especially the velocity fluctuations of
N point-particles vq(t) = (1/

√
N)

∑N
i=1 eiq·ri(t) ṙi(t).

Their correlation tensor is K(q, t) = 〈v∗q(t) vq(0)〉, with

initial value K(q, 0) = kBT
m 1. The collective displace-

ment field uq(t) shall obey

∂

∂t
uq(t) = u̇q(t) = vq(t) , (6)

so that collective displacement differences in a fluid are
given by

∆uq(t) =

∫ t

0

dt′ vq(t′) . (7)

Equations of motion (EOM) of displacement correlation
functions thus follow from the familiar results on K(q, t)
[14] based on the Zwanzig-Mori projection operator for-
malism. We consider C(q, t), the tensor of collective
mean-squared displacement differences defined by

C(q, t) = 〈∆u∗q(t) ∆uq(t)〉 = 2

∫ t

0

dt′(t−t′)K(q, t′). (8)

Its EOM follow straightforwardly after overdamping as
appropriate for colloidal dispersions:

C(q, t) +
D0q

2

kBTn

∫ t

0

dt′ G̃(q, t− t′) C(q, t′) = 2D0 t 1 ,

(9)
with the short time diffusion coefficient D0, and stress
kernels generalizing the (inverse) fluid isothermal com-
pressibility κT to finite wave vectors and frequencies:
G̃(q, t) = G(q, t) + (1/κTq )q̂q̂. Here, κTq = Sq/(kBTn)
is given by the equilibrium fluid structure factor. The
time-dependent stress kernels

G(q, t) = (n/kBT )〈σq(tQ)∗σq〉 , (10)

where tQ indicates absence of conserved modes, are built
with the stress tensor elements containing the inter-
particle forces (see Ch. 9.3, 9.4 in [14] and Ch. 3.3 in
[34])

σq =
i

q
√
N

N∑
j=1

Fj e
irj ·q =

−1√
N

N∑
j=1

Fj(rj · q)

q︸ ︷︷ ︸
σ0

+O(q) .

(11)

They reduce to the rheological stress auto-correlation
functions in the limit of vanishing wave vector

G(t) = lim
q→0

Gq(t) =
n

kBT
〈σ0(t)∗ σ0〉 . (12)

These definitions and formally exact results will now be
applied to glass, which is taken to be a non-ergodic state,
where the time dependent stress kernels take finite values
at infinite time [34]:

G(q, t→∞)→ G∞(q) , (13)

which predicts from Eq. (9)

C(q, t→∞)→ C∞(q) = 2
kBTn

q2
(G∞(q))

−1
. (14)

Displacement differences stay below a finite limit for all
times. This non-ergodic state is a solid one, and its dis-
placement field can be obtained by integrating Eq. (6)
giving Eq. (1) in the main text. The approximation
eiq·ri(t) = eiq·r̄i +O(q · ui(t)) can be made.

Particles still locally move around their time-averaged
positions, which can be measured by displacement func-
tions defined as

Ĉ(q, t) = 〈uq(t)∗ uq〉glass. (15)

The superscript ’glass’ indicates that averaging is done
in a restricted phase space set by the glassy state. As
the so obtained displacement fluctuations are ergodic,
time and ensemble averages agree, and the Ĉ(q, t) are
auto-correlators [20]. Because of Eq.(6), taking a time

derivative of Ĉ(q, t) leads to velocity fluctuations which
do not become non-ergodic at the glass transition owing
to time-reversal symmetry [34]. This gives, again neglect-
ing terms of order O(q · ui(t)),

∂

∂t
Ĉ(q, t) = −1

2

∂

∂t
C(q, t) (16)

and thus the EOM of the displacement correlation func-
tions Ĉ(q, t) in glass can straightforwardly be obtained
from Eq. (9) except for an integration constant. In order

for Ĉ(q, t) to approach zero at long times, this integra-
tion constant has to be chosen such that

Ĉ(q, t) =
1

2
(C∞(q)−C(q, t)) . (17)

The equal time variance Ĉ(q, t = 0) = 1
2C∞(q) follows,

which is the equipartition theorem Eq. (2) in the main
text using Eq. (14) and definition (15).
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II: SIMULATIONAL DETAILS

We simulated a binary mixture of hard discs under-
going Brownian motion using the algorithm proposed by
Scala et al. [35]. The system is made up of N = 1000 par-
ticles, with a diameter ratio of small to big disks ds/db =
0.7 and equal number concentrations xs= xb = 1/2 at a
total packing fraction of ϕ = πN

4V (xsd
2
s + d2

bxb). A de-
tailed analysis of the structural relaxation close to its
glass transition can be found in Ref. [23].

The dispersion relations and elastic moduli were ob-
tained as explained in the letter from 104 equally spaced
snap-shots along one equilibrated simulation trajectory
for times up to ∆t. Following the method of Alder et
al. [36] we also determined the integrated time depen-
dent shear modulus

ηxy(t) =
1

2kBTV

d

dt

〈 ∑
coll∈[0;t]

∆ryij(tc)∆p
x
ij(tc))

2〉
.

(18)

Here the sum runs over all collisions up to time t and
∆rij(tc) denotes the relative distance and ∆pij(tc) the
momentum transfer of two particles at the collision at
time tc [37]. The brackets 〈...〉 denote the average over
different simulation runs. The integrated shear modu-
lus was determined for 600 independent, equilibrated ini-
tial configurations at ϕ = 0.81 and for 150 for all other
packing fractions. Equilibration was assumed when the
correlation functions became independent on the wait-

ing time. The differentiation in Eq. (18) was done nu-
merically, as was the second one to obtain G(t) from

ηxy(t) =
∫ t

0
dt′G(t′). Finally, a seven point running aver-

age was performed on the data for G(t). The Kohlrausch
fit to the data points at ϕ = 0.80 was performed in the
intervall [1.0; 104]/(D0n

2).

For each packing fraction, the shear moduli in Fig. 2
contain the statistical average of 100 independent simula-
tion runs with different trajectory lengths. We calculated
the displacement auto-correlation functions (Eq. (3)) and
performed a fit with the function A · q2 for q . 0.7,
from which we infer the shear moduli and the errobars
in Fig. 2.
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